Improved pulmonary nodule classification utilizing quantitative lung parenchyma features.

نویسندگان

  • Samantha K N Dilger
  • Johanna Uthoff
  • Alexandra Judisch
  • Emily Hammond
  • Sarah L Mott
  • Brian J Smith
  • John D Newell
  • Eric A Hoffman
  • Jessica C Sieren
چکیده

Current computer-aided diagnosis (CAD) models for determining pulmonary nodule malignancy characterize nodule shape, density, and border in computed tomography (CT) data. Analyzing the lung parenchyma surrounding the nodule has been minimally explored. We hypothesize that improved nodule classification is achievable by including features quantified from the surrounding lung tissue. To explore this hypothesis, we have developed expanded quantitative CT feature extraction techniques, including volumetric Laws texture energy measures for the parenchyma and nodule, border descriptors using ray-casting and rubber-band straightening, histogram features characterizing densities, and global lung measurements. Using stepwise forward selection and leave-one-case-out cross-validation, a neural network was used for classification. When applied to 50 nodules (22 malignant and 28 benign) from high-resolution CT scans, 52 features (8 nodule, 39 parenchymal, and 5 global) were statistically significant. Nodule-only features yielded an area under the ROC curve of 0.918 (including nodule size) and 0.872 (excluding nodule size). Performance was improved through inclusion of parenchymal (0.938) and global features (0.932). These results show a trend toward increased performance when the parenchyma is included, coupled with the large number of significant parenchymal features that support our hypothesis: the pulmonary parenchyma is influenced differentially by malignant versus benign nodules, assisting CAD-based nodule characterizations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy

Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...

متن کامل

طراحی سیستم کمک تشخیص کامپیوتری نوین به منظور شناسایی ندول‌های ریوی در تصاویر سی‌تی ‌اسکن

Background: Lung diseases and lung cancer are among the most dangerous diseases with high mortality in both men and women. Lung nodules are abnormal pulmonary masses and are among major lung symptoms. A Computer Aided Diagnosis (CAD) system may play an important role in accurate and early detection of lung nodules. This article presents a new CAD system for lung nodule detection from chest comp...

متن کامل

[Solitary pulmonary nodule: primary, metastatic, or both].

The lung is the most common site for metastasis from colorectal cancer, which is among the most common neoplasms in developed countries. Simultaneous occurrence of pulmonary metastasis of colorectal origin and primary carcinoma has been reported. We describe the case of a 65-year-old man who underwent low anterior resection for colorectal adenocarcinoma in 2007. Follow-up computed tomography re...

متن کامل

Automatic Lung Nodule Detection from Chest CT Data Using Geometrical Features: Initial Results

In this paper, a complete system for automatic lung nodule detection from Chest CT data is proposed. The proposed system includes the methods of lung segmentation and nodule detection from CT data. The algorithm for lung segmentation consists of surrounding air voxel removal, body fat/tissue identification, trachea detection, and pulmonary vessels segmentation. The nodule detection algorithm co...

متن کامل

Lung nodule classification utilizing support vector machines

Lung cancer is one of the deadly and most common diseases in the world. Radiologists fail to diagnose small pulmonary nodules in as many as 30% of positive cases. Many methods have been proposed in the literature such as neural network algorithms. Recently, support vector machines (SVM)'s had received an increasing attention for pattern recognition. The advantage of SVM lies in better modeling ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of medical imaging

دوره 2 4  شماره 

صفحات  -

تاریخ انتشار 2015